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On the results of nonlocal Hilfer fractional

semilinear differential inclusions

R. Subashini* and C. Ravichandran’

Abstract

In this article, we establish the sufficient condition for the approximate control-
lability of Hilfer fractional semilinear differential inclusions with nonlocal condi-
tions. The results are obtained by using a fixed point technique, semigroup theory

and multivalued investigation. Examples are provided to illustrate the theory.

Keywords: Hilfer derivative; Approximate controllability; Fixed-point technique;
2010 MSC: 34A08, 34A60, 34K35, 34K50

1 Introduction

Nowadays, significant consideration has been paid to fractional differential equations
mainly due to the fact that they need several potential applications in engineering and
scientific disciplines because the mathematical modeling of systems and processes within
the fields of physics, aeromechanics, chemistry, electrodynamics of advanced medium or
chemical compound natural philosophy [1, 2, 3, 7, 8, 18, 32, 33, 34, 35, 36].

Several authors have published in fractional differential equations in recent years,
for example, Kilbas et al. [14], Lakshmikantham et al. [15], Miller and Ross [19] and
Podlubny [23]. Controllability of deterministic fractional differential equations has been
very much created by utilizing various types of strategies, which can be found in [4, 6,
16, 17, 18, 21, 22, 24, 25, 26, 27, 28, 29, 37].

Today the generalized Riemann-Liouville fractional derivative is is most well known

technique utilized by Hilfer [13], which includes Riemann-Liouville fractional derivative
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and Caputo fractional derivative. Recently, Gu and Trujillo [11] investigated a class of
evolution equations via Hilfer fractional derivatives. There are some related research
works on Hilfer fractional derivatives, for the so-called Hilfer fractional derivatives, one
can see [9, 10, 12, 20, 31]. The focus of this paper is that the study of the approximate
controllability of Hilfer fractional semilinear differential inclusion with non local condition

in Banach spaces.

g
Dx) € v+ £ (i [ K0, 00(0)a0) + Bt e f = 0.8
0

I XM mo + p(@) =20 (L)
where D]} is the Hilfer fractional derivative, 0 < v < 1, 0 < p < 1, the state x(-)
takes value in a Banach space X with norm || - ||, and the control function u is given in
L£2(Q,U) with U as a Banach space; A indicates the infinitesimal generator of a strongly
continuous semigroup {S(n)},>0; B means a bounded linear operator from U into X.
Let F: Q x X x X — 2%\ denotes a multivalued map, 2 = [0,b], k: Q x QO x X — X
and h : C(£2, X) — X denotes continuous and compact.

2 Preliminaries

In this section, we have a tendency to mention a notations, definitions, lemmas and
preliminary facts required to to establish our main results.

Throughout this paper, by C(Q, X) and C(), X) we denote the spaces of all con-
tinuous functions from Q to X and Q' to X, respectively. Let v = v+ p — yu, then
1—v=(~1-7)(1-p),define C;_,(Q,X) = {z: nx(n) € C(Q, X)} with norm || - ||,
defined by ||z, = sup{n*|x(n)|,v = v+ p—~yp}. Obviously, C;_, (2, X) is a Banach

space.

Definition 2.1. ([13]) The left-sided Riemann-Liowville fractional integral of order o
with the lower limit a for a function f : [a,+00) — R is defined as

o _ L f@) 0 o
I‘”f(")_r(a)/a ("_19)17“&9, n>a, a>0,

provided the right hand-side is point-wise defined on [a,00), where I'(-) is the gamma

function.

Definition 2.2. ([12]) The left-sided Riemann-Liowville fractional derivative of order
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a € [n—1,n),n € Z* of function f : [a,+00) — R is defined as

1A
LDa — / o n—a—1 ) 1< )
v f(n) T —a)dr ), (n—1) f@)d9, n>a, n-1<a<n

where T'(+) is the gamma function

Definition 2.3. ([13]) The left-sided Caputo’s derivative of order o« € (n—1,n),n € Z*
of function f : [a,+00) — R is defined by

1 n e (9)dY
I'(n—a) / (n =)o+t

D f(n) = n>a n—1l<a<n.

Definition 2.4. ([12]) (Hilfer fractional derivative) The generalized Riemann-Liouville

fractional derivative of order 0 <y <1 and 0 < p < 1 of function f(n) is defined by
Dyt f) = (24D (2070 F) ) @)

where D = di"

Remark 2.1. ([13]) (i)When~ =0, 0 < u <1 and a =0, the Hilfer fractional deriva-

tive corresponds to the classical Riemann-Liouville fractional derivative: Dgf (n) =

=Ty "f(n) = Dp.

(ii)) When v =1, 0 < u < 1 and a = 0, the Hilfer fractional derivative corresponds to

the classical Caputo fractional derivative: Déf = I&:“%f(n) =Dl f(n)

Lemma 2.1. (/35]) For o € (0,1] and 0 < a < b, we have |a” — b%| < (b — a)°

Lemma 2.2. ([23]) Let D be a nonempty subset of X, which is bounded, closed, and

conver. Suppose G : D — 2X\() is upper semi continuous with closed, convex values, and

such that G(D) C D and G(D) is compact. Then G has a fized point.

Lemma 2.3. The fractional nonlocal control system (1.1) is equivalent to the integral

inclusion

Zo —p(l‘) v—1
X)) € 5—
() L(y + = yp)

1 n 1 9 /
* i ) @ A + FOO), [ R0 )ir) + Bu)av.n € 0

(2.1)
The Wright function Y ,(o), which is defined by
T,.(0) = i (o™ O<pu<lpeC (2.2)
. — (n— 1)IT(1 = pn)’ '

n=1
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which satisfies the following equality [;~6°Y,(6)df = r(llj:g , for 8 >0.

Lemma 2.4. If integral inclusion (2.1) holds, then there exists f € L1(Q, X) such that
F(n) € F(n,x(), Jg k(n, 0, x(9))dd)

\(n) = 8, ()0 — pla)] + / "I~ 9) £(9)d0 + / " L1 — 9)Bu(9)dv,n €
(2.3)

where T,(n) = 1" Pu(n), Pu(n) = / PO, (0)Q(n"0)do and S, ,(n) = I\ T, (n)

We list out the following hypotheses.
(Hy): Q(n) is continuous in the uniform operator topology for n > 0 and {Q(n)},>o is
uniformly bounded, i.e., there exists T > 1 such that sup,cjo ;o0 [Q(n)] <Y

Proposition 2.1. (/36]) Under assumption (Hy), P,(n) is continuous in the uniform
operator topology for n > 0.

Proposition 2.2. (/33]) Under assumption (Hy), or any fized n > 0, {7,(n)},>0 and

{8, (M }y=0 are linear operators, and for any x € X

Tn”’l ’rn(”/ D(p-1)

1 Zu(n)z|| < () =[], ISy u(mzl| < WH x|

Proposition 2.3. (/33]) Under assumption (H1).{T,(n)},>0 and {S, .(n)},>0 are strongly
continuous, which means that, for any x € X and 0 < <" <b, we have | T,(n )z —
Zu(n")zl| = 0 and [|S, u(0)x = S, u(n")a] = 0 as n" — o

Let (X, ]I.1l) be a Banach space. We will use the following notations: P(X) = {Y €
2 Y # 0}, Pa(X) = {Y € P(X)} is closed, Py(X) = {Y € P(X)} is bounded,
Po(X)={Y € P(X)} is convex, P.,(X) ={Y € P(X)} is compact.

Proposition 2.4. ([24])

(1) A measurable function u : Q@ — X is Bochner integrable if and only if ||u|| is

Lebesgue integrable.

(2) A multi-valued map F : X — 2% is said to be convez-valued (closed-valued) if
F(u) is convex (closed) for all uw € X; is said to be bounded on bounded sets if
F(B) = U,ep is bounded in X for all B € Py(X).

(3) A map F is said to be upper semi-continuous (u.s.c.) on X if for each ug € X the
set F(uo) is a nonempty closed subset of X, and if for each open subset © of X
containing F(ug), there exists an open neighborhood ¥V of ug such that F(V) C ©.
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(4) A map F is said to be completely continuous if F(B) is relatively compact for every
B € Py(X). If the multi-valued map F 1is completely continuous with nonempty
compact values, then F is u.s.c. if and only if F has a closed graph, i.e., u, —
U Y — Y;Yn € F(u). We say that F has a fized point if there is u € X such that
u € F(u) .

(5) A multi-valued map F : Q — Py(X) is said to be measurable if for each u € X
the function y : Q — R defined by y(n) = d(u, F(n)) = inf{||lu— z|l,z € F(n)} is
measurable.

(6) A multi-valued map F : X — 2% is said to be condensing if for any bounded
subset B C X with B(B) # 0 we have B(F(B)) < B(B), where 3(-) denotes the
Kuratowski measure of non-compactness defined as follows: (B) =inf{d>0:B

can be covered by a finite number of balls of radius d}

Definition 2.5. By a mild solution of system (1.1), we mean a function v € Cy_,(€, X)
satisfying:

(1) Ié;VX(n”n:O +p(13) =x9€ X,

(2) f€LY(Q,X) such that f(n) € F(n,x(n), [; kn, 7. x(9))dV)
X01) = Syl —pla)] + [ "I — 9) f(0)d0 + / "I (n — 9)Bu(d)do.n € Q.

Because T,(n) = n*~'P,(n), then the equation earlier is equivalent to
"
X0 = S, o~ p(@)] + [ (0= 07l — )7 (0)a
0
"
+ / (n — )" 'Pu(n — 9)Bu(d)dd,n €
0

In order to review the approximate controllability for the nonlinear system (1.1), we

tend to first take into account the approximate controllability of its linear part

Dy'x(n) € Ax(n) + (Bu)n, neQ =(0,0]

I ()0 = o (2.4)

Here, B: U — X is a linear bounded operator, v € £2(€, U).

Definition 2.6. The control system (2.3) is said to be approximately controllable on ) if
for all zg € X, there is some controlu € L*(2, U),the closure of the reachable set R(b, xo)
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is dense in X, that is, R(b, z9) = X, where R(b,z9) = {x(b,u) : u € L*(Q,U), x(0,u) =
xo }; which is the reachable set of system (1.1) with the initial value zo at terminal time

b.

Remark 2.2. Assume that the linear fractional control system (2.3) is approximate
controllable. We recall from [17, 22] that the approximate controllability of (2.3) is such

as the convergence of aR(a,T%) — 0 as a — 0T in the strong operator topology.

3 Existence results

We obtain existence and approximate controllability results for the fractional nonlocal
control inclusion (1.1). We consider the following hypotheses

(Hz) Q(n) is a compact operator for each n > 0 and ||a(R(a,I%))|| <1forV a >0
(H3) The multivalued map F : Q x X x X — Py 4.0 (X) satisfies the following:

(3a) F(n,-,-) : X x X — X is us.c and for each € Q and for z,y € X, the
function F (-, z,y) : Q — X is strongly measurable with respect to 7 for each
z,y € X, the set

&w={f€E%QX5#m)€f<mxmhljﬂmﬁxwww>ﬁﬂaeneﬁ}

is nonempty.

(8b) k: Q2 xQx X — X a continuous function, there exist a positive constant k;
such that || [[/[k(n, 9, z) — k(n,9,y)]dV|| < ki|lz — y| for each n,¥ € Q and
r,ye X

(3c) There exist a function n(n) € £%7 1 € (0,u) and a continuous nonde-
creasing function ¢ : [0,00) — (0,00) such that for any (n,z,y) € Q x
X x X, we have || F(n, x(n), [g k(1. 0, x(#)d9)|| = sup,co{llf )l : f(n) €
(F00.x(0). Jg k(0. 9. x(9))d0)} < n(m)o(lal,), limy—oo inf %2 =@ < 00;

(Hy) h: C(Q,X) — X is continuous and compact, and there exists positive constant
L > 0 such that ||p(x)|| < £ for each = € C(Q, X)

gy blovy (I—pa)' b T2Y2 p2u-1
(Hs) (p(7(1—u)+u) + D(u) (Zlfm)l’“l w||n||%) (1 + aF2(i) u <1

Lemma 3.5. Let Q be a compact real interval and let X be a Banach space. Let F

be a multi-valued map satisfying (Hs), and let T be a linear continuous mapping from



On the results of nonlocal Hilfer fractional semilinear differential inclusions 317

LN, X) to C(Q, X). Then the operator
T'o S]: . C(Q, X) — 'Pb,cz,cv(C(Q, X))

z+— (T o Sg)(x) =T(Srs) is a closed graph operator in C(Q, X) x C(Q, X).
To prove our results, we introduce two relevant operators:

b
—_— * * 1
Th = /O (b= 97 72P, (b~ 9)BBP;(b— 0)di, 5 <p<1

and R(a,T}) = (aZ +T4)"', a > 0, where B* denotes the adjoint of B and P is the
adjoint of P,. It is straightforward that the operator I'} is a linear bounded operator.

Now, for any a > 0, and z; € X, we set
u(n) = (b—n)*"'B*Py(b — ) R(a. I)p(x(-)),
where
b
p(x(-)) = 21 = Syu(b) o — p(a)] + / (b= )"~ Pu(b = 9) f(9)do.
0
Using this control u, we define the operator W : C;_,(Q, X) — 261-+(2%) ag follows
7
U(z) = {z €Ci_,(,X):2(n) =8, .(n)[xo — p(x)] + / (n— )" '"Pu(n —9)f(9)dY
0
7
+ [ = 0y Putn - OB}, f € Sram ).
0

According to assumption(Hs), we can obtain

To(llzll,) (1= po)' 1o
F(:U‘) (,U — ,U/l)l_p’l

Il 1
m

/0 (0 — 9Py — 0) F(0)d0 <

Thus

IO < ol + ot ol + 2} + ToL) () O

Theorem 3.1. Assume that the hypotheses (Hy) — (Hs) are satisfied. Then system (1.1)
has a mild solution.

7]l 1
1

Proof: Now, it will be shown that the operator ¥ has a fixed point. The proof will be
divided into six steps.
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Step 1: The operator ¥(z) is convex for each x € C;_, (92, X).
Let 21,22 € C1-,(€2, X), then there exists fi, fo € Sz, such that for each n € ), we have

) = Sl = o) + [0 0Py 0) o)
+ [ 0p P - 0)0 — 0y BB - )Rl 1Y)
X (xl ~ 8, u(b)[zo — p(z)] — /Ob(b — TP — T)fi(T)dr)cw, i=1,2.
Let 0 < A <1, then for each n € 2 we have
(A2 + (1= X)) ()
=S, n)zo = (@] + [ (0= 9P P = DARG) + (1= NL0)}d0

" /’7(77 — OV Pu(n = 9)(b— 0) BB, (b — ) R(a, IY)
b
X (ffl = Syu(b)zo — p(x)] — /0 (b—7) 'Pub—T)[Afi(r) + (1= ) fz(T)]dT) do.

Since Sx, is convex, Az; + (1 — N)zg € Sgr,. Hence Az + (1 — M)z € U(x).

Step 2: consider a set B, =z € C;_,(Q, X) : ||z]|, < r, where r is a positive constant.
Obviously, B, is a bounded, closed and convex set of C;_,(€, X). We claim that there
exists a positive number r such that ¥(B,) C B,.

If this is not true, then for each positive number r, there exists function =" € B,, but
U(x") ¢ B, , ie.,

r < ([l

< sup ' |8, () wo — p(@)]]|
neq

n
4 sup ™| / (0 — O 1P, (5 — 0) £(9)
0

neqy

n
+sup | / (n— 0)*"Pu(n — 0)Bur (9)d)|
0

neqQ!
T L) (1 — gur) b
< —————llzoll + Lll.] + nll
< eyl + £l TG Gyl
bl—wr?y% p2u—1
e ries
o To(llar|)) (1 — o) b )
< ol + s + lllzoll + Lllzll] + — nll
<|| 1 D(y(1 =) + ) [oll lll.] T(p) (1 — pg)m | ”i
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T DT (r) (1 — )b
<[l + L] +
e e e L e R 77 e e
|:b1uT2T% b2u1:|
al*(p) — p

Inll1
m

o Th 1 . . Yo(r) (1 — py)trapr—m }
(ol + s+l + )+ TR I )

Dividing both sides of the above inequality by r and taking the limit as » — oo and
using (Hs), we get

e Pt 4 C el ) i Infls ) {1+ it Lo P
TO(I—m+p) T (u—pyre al?(p) w )~

which is a contradiction to (Hs). Thus, there exists 7 > 0 such that ¥ maps B, into
itself.

Step 3: ¥ maps bounded sets into equicontinuous sets of C;_,(Q, X).

Let 0 < v <n<n+h<bande>0. For each x € B,,z € U(z), there exists a f € Sr,
such that

2(n) = 8y ()0 — pla)] + / (= 9P — 0) £ ()0 + / (1 — 9P (1 — 9)Bu(0)dd,
Clearly,

lz(n+h) —2(n)] < sup 0718y u(n + W) [xo — p(x)] — Sy u(n) o — p(z)]]|
,

n+h

+ sup '~ / (14 h =9 Puln+h — ) F(2)dd |

neqQ’ n

n

tsup || [ (4= P+ - 9) = Pt~ ) 1)

neq’ n

+ sup 7]1’”

ne

(b= 9y = (= 9P (n = D) ()

+sup || [ (b= 0 (Puln+h = 0) = Puln — 9)f (0)dd

neq’

neqy’

+sup it (4 h — 9P (n+ h — 19)Bu(19)d19H

neq’

+supn'™”
neqQ)

/
|
sy [ =0y = (= 0P - ) 010
/
/

" b= 0P P+ = 9) — Pyl — 9)Bu)a |
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tsup | [ (et b= 07 = (0= 0P 0) Bty

neqy’ —€

+supn'™” /01?76(77 +h =) (Pu(n+h—19) = Pu(n — ﬁ))Bu(ﬁ)dﬁH

neY

s | [ =0y = (0= 0P - 0)Buto)a |

neq/
11
= § 7
i=1

Now, we only need to check Z; — 0 as h — 0,i = 1,2, ..., 11.
For 7, by Proposition 1.3, 7y — 0 as h — 0.
Let ¢ = ﬁ € (—1,0). In view of Proposition 1.2, for Zy,Z3,Z4,Z5s and Zg we have

blvYo(r) hlatD(A—p1)
7, < X0 B
P(u) (g + D)0 7T

b Y () n BT (r) (Qh)(qul)(l—m)
To < ———~ 7 _9\pu—1 <
S T </n_5(77+h ) d19> Inll.L < ORI Inll 1

blf"T(z)(T) </n . i )1—#1
Iy < —" +h—N"—(n—) | T-mdd nj|
R T LA U Il 2
bl“’T¢(r) (Qh)(Q+1)(1—u1)
NECESVETRAE
n—e
Is <7 sup [[Pu(n+h—9) = Pu(n = 9)| (/ (n+h—19)“1d19> o(r)lInll =
0 K1

V€E[0,n—¢]

—€

— _|_hq+1_ h_{_'q-‘rl 1—p1
< bt sup ||’]3H(77+h_19)_'pﬂ(77_19>”[(77 ) ( €)1

o(r)|n|| L
Ve[0,n—e] (q-‘,—l)l*}tl ( )H ||u1

In a similar way, for Z7, Zs, Zy, Z;9 and Z7; we obtain

e hla+1)(1—p1)
) e
bl—uTTB (2h)(q+1)(17;t1)

ol

I; <

BT @)

(

bl—z/'rTB (2h)(q+1)(1—u1)

[ (g po 1l

_ + h)T — (h+ e)att])i-m

Tio < bV Yp su P.n+h—29)—P,(n—10 U

10 S 3196[0”17_6] I ;,(71 ) /(77 )H (q+1)-m
bl—u'r’rB (2h)(q+1)(1—,u1)

G (g + oo 1

Iy <

[[ul

I <
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It can be easily seen that Zs, 73,74, Zs, I7,Is, Zg, Z11 tends to zero as h — 0. By Propo-
sition 2.3, Z5 and Zj4 tends to zero. Thus ||z(n+h) — z(n)|| — 0 as h — 0 for all = € B,..
This implies that U(B,) C C;_,(Q, X) is equicontinuous.

Step 4: Next we show that the set V(n) = {z(n) : z € ¥(B,)} is relatively compact
in X. The case n = 0 is trivial. Let n € (0,b] be fixed and for each A € (0,7) and
Vo > 0, z € U(B,), define an operator

n—\ poo
20 = gy | [ 0 =0y Q) — pa)}asag
+Q(w0) /0 " /5 " 100 — 9V (0)Q((n — 9)48 — NO)[F(9) + Bu(9)]dod

From the compactness of Q(M\6), \*6 > 0, we obtain that for VA € (0,1) and V4§ > 0,
the set V<o(n) = {z*(n),2M° € UN(z),z € B,} is relatively compact set in X.

Moreover, for each = € B,, we have

() = 2> ()]

=supn' ¥
neqy

n 5
ﬁ / Ul / HOT,(0) Q9 0)[wo — p(w)]dbdy

; n _\v(1—p)—1gu—1 > O\ (2o — vl
+F(7(1—u))/o(n e / $0X,(6)Q(040) 0 — plx)) by

—; " _ 9)yy(1=p)—19u—1 * Y —
F(“/(l_ﬂ))/o = op=E /5 HOT(6)Q(9"9) [z — p(a)}dbd

n 8
" /0 /0 ub(n — 91, (0)Q((1 — 0)40)[f (V) + Bu(V)]dody
" /on /500 pb(n — 0)71L,(0)Q((n — 9)*0)[f (9) + Bu(V)]dodv

" /o " 00— 0PI (0)Q(n — ) [£(9) + Bu(ﬁ)]dé)dﬁ”

1 n o
<supn'™ 7/ -9 W*M*W*l/ 6 ,.(0)Q(1#0) [z — p(x)]dOdd
sup '™ sy ) =) [ Y6270z — p(a))dba)|
Y o)
+ sup '~ ; / (n — 9y a=m=1gu=1 / WL, (0)Q070)[y — p(a)) 0|
neq’ A/ 1 _N)) 0

+sup 'Y / / 16(n — 9) 1T ,(0 )Q((n—ﬂ)“e)[f(ﬂ)+Bu(z9)]d0dz9H

wsup || [ [ b= 0p 0,012~ 910)LF(0) + Buto)lasa

neqy

wY
< Ty =yl + £rlIBGGe 1),;4_1)/0 07,(0)d6

321
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pYpr-m=1 A
D(y(1 = p))T(L + ) p

pr-vyple+D(d—p) 4
W@(NH”H% +TB||U||)/0 0 ,,(0)df

pt=ry \a+1)(d-p1)
T(1+ p)(g+ 1)t

[llzo + L[] /;O 0, (0)do

(@(r)lInll L+ Tsllull)

This implies that these are relatively compact sets arbitrarily close to the set V(n) for
each n € (0,b]. Thus V() is relatively compact in X for all n € (0, b]. Since it is compact
at n = 0, hence V(n) is relatively compact in X for all n € Q.

Step 5: U has a closed graph.

Let z, — =, as n — o0, z, € ¥(z,) and z, — 2z, as n — oo. We shall show that
2z € ¥(x,). Since z, € ¥(x,), there exists a f,, € Sz, such that

o) = Sylen = @)+ [ (0= PP = D)1 ()0
+ /0 "(n — )PP — 9) (b — )P BBPL(b — Y)R(a, Th)
x <x1 — 8, u(b)[wo — pla)] — /0 b(b — )P (b —7) fn(f)df) v
We must prove that there exist f, € Sy ,. such that for each n € ©,
(1) = S, lan = ) + [ (0= PP = 0).(0)a0
+ /0 n(n — )PP — 9)(b— )P BB PL(b — 9)R(a, Th)
< (01— 8,000~ i) - | b= P b= )i )
Clearly,

H {Z"(n) = Sy u(m)[wo — p(x)]

(=)~ Pu(n = 9) (b — 0)*~ BBP; (b — ) R(a, ')

S—

X

VS

21— 8, p(B)iro — p(a)] — /0 b P — 1) u(r)dr ) ]

—

() = Sy u(n)lzo — p(@)]

(=0~ "Pu(n = ) (b — 0)*~ BBP;(b — ) R(a, ')

S—
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x (xl — 8, u(B)[zo — p(z)] — /0 b(b — )P (b — 7 f*(T)dT>d19} H

—0 as n— oo.
Consider the linear continuous operator I : E%(Q, X)—C_,(2,X)
J
CH = [ =0 Pty - 9)5,0)a0
0

"

+ [0 0y Putn = )0 - 0y BB 0 - ) R(e. Y

’ b

x ( / (b= )" Pulb = 1) fu(7)dr ) d

0

Clearly, it follows from Lemma 2.4 that I" o Sz, is a closed graph operator. Also from

the definition of I', we have that
[2a(0) = Ssleo = (@) = [ (0= 00" Pulty = 9)(6 = 0" BBy~ D)R(a. )
Ob
x (21— 8, (0)mo — p(x)] - /0 (b ) Pyl — ) fulr)dr ) 0] € T(Siz,)
Since f,, — f., it follows from Lemma 3.5 that
[2.0) = Syulan — p(@)] = [ (0= 071 Pyln = )b~ ) BBP;(0 - ) R(a, T
Ob
1= 8y (D)o — - b— 1) Pu(b—7)fu(T)dT )dI| € T(SFa,
< (1= 8,0l = (@) = [[6= 7P 1P b= L)) 0] € TS5

Therefore ¥ has a closed graph. As a consequence of step 1 to step 5 with the ArzelaAs-
coli theorem, V¥ is a completely continuous multivalued map with compact value and
hence ¥ is u.s.c.. Hence by Lemma 2.2, ¥ has a fixed point x(-) on B,, which is the mild
solution of the system (1.1)

Theorem 3.2. Assume that (Hy) — (Hs;) hold and multivalued function
F(n.x(n), [y k(n, 9, x(9))dV) is uniformly bounded. Moreover, assume that the corre-
sponding linear system (2.3) is approxzimately controllable on ), then system (1.1) is
approximately controllable on ().

Proof: Under the above hypotheses, we know the operator ¥ has a fixed point in B,.
Let 2* be a fixed point of ¥ in B,, this means there exists f* € Sr, such that

2(n) =8, ()0 — h(z)] + / (1= 9P — ) f ()
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+ [t 0p Pt - 0)0 — 0y BB R0 - ) Rla.TY)
x (21 = Sy u(B)lwo — ha*)] - /0 (b PP 1) fo(ryar)av, nes
Define
) =1 8,000~ 1]~ [ 0= 1P~ ()i
Noting that Z — TjR(a,T%) = aR(a,T%) we get
(0) = 8,00~ hG+ [ 0B~ O
+ /O b(b —9)?=VP, (b — 9)BBP; (b — V) R(a,T?)
% (71 = 8,0 [0 — hla®)] - /0 b P fo(r)dr ) di
= 8yu(b)[wo — h(z")] + /Ob(b — PP (0 — 0) f4(9)dV + TgR(a, Tg)p(”)

b
= Sy u(0)wo — h(z*)] + /0 (b—0Y " Puln = 0)f*(9)dV + p(z") — aR(a, Ig)p(x")

= a1 — aR(a,T5)p(a”)

In addition, by our hypotheses, there exists constant £ < oo such that ||f2(9)| < L.
Consequently, the sequence {f%(¢)} has subsequence still denoted by {f*(¥})}, weakly
converges to say {f()}.

Denote

b
W= = Syl —pl) = [ (b= 0P 0= D f()0
We derive that

/Ob(b — )P (b =9 [f*(9) — f(ﬂ)]dﬁH

Ipa) — wll = lIpa* — p(a)] + |
b
< tla® —al, + || [0 =0y P = 0)1r7(0) — o)

From the compactness of the operator {P,(n),n > 0} and the uniform boundedness of
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{f*(9)} that there exists some f(9) € £L}(Q, X) such that as a — 0"
Pulb = 0)f*(0)d) — Pu(b— ) f(V)

Moveover, by the approximate controllability of system (2.3) and Remark 2.2, we all
know that a(aZ + I'})~! tends to zero as @ — 07 in the strong operator topology. Thus

we can obtain that as a — 0T,

() = @]l < [laR(a, Tg)(w)] + [laR(a, To)[|p() — wll
< [laR(a, To)(w)] + |p(=") — w]

—0

Therefore, system (1.1) is approximately controllable on Q. The proof is complete.

4 Application

As a use of our outcomes, we consider the fractional differential inclusion

DI (x(n. ) € xoo(n. 6) + F (n, n.0) [ o.0.x(0 e))cw) 1 Bu(n.0).
x(7,0) =x(n.7) =0, neQ=10,0]

I(()%)(lfu)(x(o, 0)) + Z /Oww(e, 2)x(ni, 2)dz = x0(6), 0 € [0, 7] (4.1)

3 Lya—p) .
where ’ngr“ is the Hilfer fractional derivative of order % and type 7, I(“)(1 " is the

Riemann-Liouville integral of order (1 — ), F (0. x(n.0), [, 9(n. 9, x(v,0))dd) and
Bu(n,0) are given functions, w(f,z) € L2([0,x] x [0,7], R"), m is a positive integer
and 0 <oy <M < ... <N < byz0(0) € X = L2([0, 7], R).

Let U = X = £%([0,7], R) and Define an operator by Az = 2” with the domain,
D(A) is given by {z € X : 2,2’ are absolutely continuous, z” € X, z(0) = z(7) = 0}.
Then Az = Y 07, —n*(z,e,) ey, 2 € D(A), where e,(§) = \/gsin nd, n=1,2,.... It is
known that A generates a compact semigroup Q(n),n > 0, in A and is given by

x—ge (T, en) en.

Let x(n)(0) = x(n,0),n € Q =1[0,b],0 € [0,7]. Now for any z € X = L*([0,7],R),0 €
[0, 7], we define function F : 2 x X x X — Z, the bounded linear operator B : U — Z
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respectively by f(n x(n fo (0,0, x(9)d9) (0) = F (0, x(n,0), [, g(n, ¥, x (9, 0))d)
and p(z)(0) = > [y w X(n;, z)dz. Therefore, system (4.1) can be reformulated as
the nonlocal Cauchy problem (1.1). Hence(4.1) is approximately controllable on 2.
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